Powerlite[™] DLS 9000

High Energy Nd:YAG

The Powerlite Series of high energy YAG lasers is known for its beam quality, reliability, and ease of use. The New DLS (Digital Laser Source) Series remains consistent with the Amplitude approach to laser design, keeping the features that have made it so popular, and adding new capabilities to enhance its performance and utility.

The DLS power supply is compact and quiet, taking up half the space of the one it replaces. The components are modular and rack mounted to simplify maintenance and service. It uses distributed intelligence, with microprocessors in both the laser head and power supply.

A new cooling group with active digital control has been added. The complete control of all functionality is made possible through a digital interface, thus eliminating the need for knobs or switches.

A powerful Windows®-based Graphical User Interface is standard for all Powerlite DLS systems. An optional touch screen remote control is available, as are LabView drivers.

Industry:

- > Material sorting (recycling)
- > Weld inspection
- > Cleaning
- > LIBS

Science:

- > LIDAR, LIF, LIBS, PLIF
- > Thomson Scattering
- > Laser Thermal Annealing
- > Pump Source

Medical:

- > Skin Surfacing
- > Tattoo Removal
- > Pump Source
- > Medical device manufacturing

- > Distributed intelligence power supply architecture.
- > Rack mounted and modular components for easier maintenance and service
- > New cooling group with active digital control for acurate temperature monitoring and improved thermal management
- > LabView drivers available
- > HEO for maximum 532 nm output

Specifications	9010	9020	9030	9050		
Repetition Rate (Hz)	10	20	30	50		
Energy (mJ) 1064 nm 532 ¹ nm 532 HEO 355 ² nm 266 nm	2000 1000 1400 550 160	1800 900 1200 475 110	1600 800 1100 400 90	1200 600 800 350 75		
Pulsewidth ³ (ns) 1064 nm 532 nm 355 nm 266 nm		6-9 5-8 4-7 4-6				
Linewidth ⁴ (cm-1) Standard Injection Seeded, SLM		1 0.003				
Divergence ⁵ (mrad)	0.	45		0.5		
Beam Pointing Stability ⁶ (±μrad)		30				
Beam Diameter (mm)		9				
Jitter ⁷ (±ns) Unseeded Seeded		0.5 1.0		0.6 1.0		
Energy Stability ⁸ (±%) 1064 nm 532 nm 355 nm 266 nm	3.0 4.0	;0.8 ;1.0 ;1.3 ;2.6	2.5;0.8 3.0;1.0 4.0;1.3 9.0;3.0	3.0;1.0 4.0;1.3 6.0;2.0 9.0;3.0		
Power Drift ⁹ (±%) 1064 nm 532 nm 355 nm 266 nm		6	3.0 5.0 5.0 3.0			
Ising Type II doubler 6 99.9% shots will be <±30 μrads with ΔT _{room} <±3°C			All specifications at 106	4 nm unless otherwise noted.		

¹ Using Type II doubler

Dimensions

Optical Head (LxWxH)	1189.2 x 457.2 x 298.4 mm (46.82" x 18" x 11.75")
Power Supply (L x W x H)	714.5 x 621 x 546.1 mm (28.13" x 24.46" x 21.5") PL 9050: 714.5 x 621 x 679.4 mm (28.13" x 24.46" x 26.75")

Water

Service	1-2 GPM (gallons/minute) at 10 - 40 PSI pressure drop
Temperature	<22° C / 70° F (higher flow rate for higher temperature)

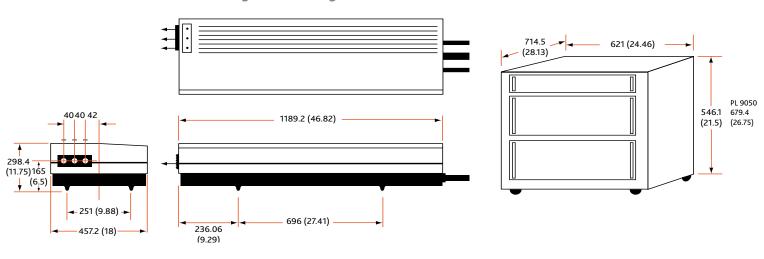
Others

Electrical Service	200 - 240 VAC, single Φ, 50/60 Hz			
Room Temperature	18 to 30° C / 65 to 87° F			
Umbilical Length	5 m (16.4 ft)			

² Using Type I doubler
³ FWHM full width half max
⁴ FWHM (1cm⁻¹ = 30 GHz)
⁵ Full angle for 86% (1/e²)

 $^{^{6}}$ 99.9% shots will be <±30 µrads with ΔT_{mom} <±3 $^{\circ}$ C

With respect to external trigger


⁸ The first value represents shot-to-shot for 99.9% of pulses, the second value represents RMS

⁹ Average for 8 hours with ∆T±3°C

Specifications	9010	9020	9030	9050
Beam Spatial Profile (Fit to Gaussian) ¹⁰ Horizontal Near Field (<1m) Far Field (∞)		0.7 0.95		0.65 0.90
Max Deviation from fitted Gaussian ¹¹ (±%) Near Field (<1m)	40			
Service Requirements 208-240 VAC, single Φ Water GPM at 10-40 PSI	14A 1-2	21A 1-2	24A 2-3	35A 2-3
Polarization 1064 nm 532 nm 355 nm 266 nm	Horizontal Vertical Horizontal Horizontal			

¹⁰ A least squares fit to a Gaussian profile. A perfect fit would have a coeffficient of 1.

Powerlite DLS 9000 Physical Layout

¹¹ Within FWHM points near field at 1 meter.

Powerlite[™] DLS 9000

High Energy Nd:YAG

